
On the multi-neuron interaction model without truncating the interaction

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 5871

(http://iopscience.iop.org/0305-4470/27/17/019)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 22:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 27 (1994) 5871-5878. Printed in the UK 

On the multi-neuron interaction model without truncating 
the interaction 

D Bollit$, J Huyghebaertt and G M Shimtg 
lnstituut voor Theoretisshe Fysiw. K U Leuven, B-3001 Leuven. Belgium 

Received 27 May 1994 

Abstract. A replica-symmetric meamfield theory approach is presented to the multi-neuron 
interaction model introduced by de Almeida and Iglesias (1990 Phys. Len. 146A 239). Fixed- 
point equalions are derived for the relevant order parameters of the model, extended to include 
biased patterns. without truncating the interaction. The capaciQ-bias and the temperature- 
capacity phase diagrams m discussed. Compmd with the truncated version of the model, it is 
found that the capacity al zero tempmure is infinite and thal the retrieval stales satisfy the de 
Almeida-Thouless stability condition. 

1. Introduction 

Many attempts have been made to improve the storage capacity and retrieval properties of 
neural networks by generalizing the Hopfield model in various directions (see, e.g., [ 11 for 
an overview). 

In particular, networks with multi-neuron interactions have been looked at from this 
point of view [2-131. It is well known that, if the two-neuron interaction of a Hopfield 
model of size N is replaced by a polynomial interaction of degree p > 2, then up to 
O(N"-') random patterns can be stored and retrieved. 

Recently a model has been proposed by de Almeida and Iglesias [14] where all orders 
of neuron interactions are included in such a way that the Hamiltonian is proportional to the 
product of the Hamming distances between the network state and the embedded patterns. 
This system does not necessarily have a spin updown symmetry, in contrast with the 
Hopfield model and its generalizations. However, this symmetry can always be imposed by 
adding the antipatterns to the original set of embedded patterns. Actually this possibility 
yields two extreme cases: storage of both the patterns and antipatterns (PAS) or storage of 
the patterns only (OPS). An extensive simulation of these cases [15] essentially reveals that 
for unbiased patterns a PAS network does not show a limit on the storage capacity. For the 
OPS network, however, the basins of attraction may become too small. This can be traced 
back to the existence of a spurious central state [ 11 in the direction of the sum vector of 
all embedded patterns. This state is built up out of positive overlaps of order l / f i  with 
all patterns and has a large basin of attraction. 

A truncated version of the PAS model has been introduced and its retrieval performance 
has been compared with a generalized Hopfield model both by numerical simulations and 
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by a replica-symmetric mean-field analysis in the case of fourth-order corrections [16]. Also 
the strength of this correction term has been varied [ 171. The phase diagrams for both mod- 
els were discussed in detail. While the overall behaviour of the generalized Hopfield model 
qualitatively resembles the original Hopfield model, a strikingly different and very rich b e  
haviour has been found for the PAS model, depending on the strength of the fourth-order term. 

In this paper, we consider the original model of de Almeida and Iglesias allowing for 
an extensive number of embedded patterns. The patterns may be biased. We present a 
replica-symmetric mean-field analysis without truncating the interaction. This is realized 
by observing that the product of the terms in the Hamiltonian related to the non-condensed 
patterns can be described in the thermodynamic limit by the mean-square random overlap. 

Independently of the bias we find that the critical storage capacity is infinite at zero 
temperature and that the replica-symmetric solution is stable against replica-symmetry 
breaking (RSB). In order to compare the retrieval performance of the full (i.e. non-truncated) 
with the truncated model we study the temperature+apacity and the capacity-bias phase 
diagram, and the behaviour of the overlap. 

The rest of the paper is organized as follows. In section 2 the model is defined. Section 3 
presents a replica-symmetric mean-field theory analysis. Section 4 discusses the solutions 
of the fixed-point equations and the corresponding capacity-bias and temperature-capacity 
phase diagrams. Also the behaviour of the overlap as a function of the relevant parameters 
is considered. A comparison is made with the truncated model. The concluding remarks 
are given in section 5. 

2. The model 

Let us consider a network consisting of N Ising neurons {ui} interacting via the Hamiltonian 
1141 

where the [i$}, i = I ,  . . . , N. I.L = I . .  . . , p is a collection of independent identically 
distributed random variables with p the number of embedded patterns. 

The Hamiltonian ( I )  is proportional to the product of the Hamming distances between 
the network state and the embedded patterns. It is positive-definite, only being zero when the 
network state exactly coincides with one of the patterns. This means that the configurations 
corresponding to the embedded patterns are always the global minima. The first non-trivial 
(quadratic) term in an expansion of this Hamiltonian with respect to the (ui} corresponds 
to the Hopfield model. 

This model stores both the patterns and antipatterns and is therefore refered to as the 
PAS model. It has been studied in detail for low loading (finite p )  of unbiased patterns in 
[ I ,  141. In contrast with the Hopfield model the symmetric mixture states with more than 
one pattern are always unstable. Numerical simulations discussed in 1151 found no limit on 
the storage ratio (Y = p f N .  

For biased patterns, however, these simulations [ 151 show that the PAS model has quite 
a limited storage capacity and a very small relative size of basin of attraction. In view of 
the results on the Hopfield model for neurons with low levels of activity [ 181 this should not 
be surprising. In fact, it is easy to show that for biased patterns the Hamiltonian ( I )  does 
not allow for Mattis-type solutions, which are most desirable as an associative memory. 
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To overcome these problems we consider the following Hamiltonian: 

where the (6:) is a collection of independent identically distributed random variables taking 
the values *I with probabilities i (1  * a )  and where 

are the scaled (modified) overlaps between the network state and the embedded patterns 
involving the bias parameter a. In the sequel we will always use the overlap parameter (3). 

The Hamiltonian (2) allows for Mattis-type solutions. Furthermore, the modification 
and scaling of the overlap is necessary to keep the essential property that the configurations 
corresponding to one of the stored patterns still have a zero Hamiltonian. 

3. Mean-field theory 

In the following we consider the network described by the Hamiltonian (2) allowing for an 
extensive number of biased patterns p .  As usual we are interested in the situation where 
only a finite number 1 of the patterns, say p = 1, . . . , I ,  are condensed in the network. The 
others have an overlap of at most order O(l / f i ) .  

To perform the standard mean-field analysis [19] it is essential to observe that the 
product of the terms in (2) related to the non-condensed patterns may be described in the 
thermodynamic limit by the mean-square random overlap 

Within the replica-symmetric approximation. we obtain the free energy 

pf = (I - a 2 )  Cfi,m, + fq(1 - q )  + (Y(I - 4’);s + ~ ( 1  - 4’)e-‘,‘ n ( ~  - m;) 
i I 

p=1 p= I 

1 -Z(1 - q )  
=q 1 log[ I - 2f(l - q ) ]  - 

Here the mu are the overlaps (3) with their conjugate variables kM, q is the Edward- 
Anderson order parameter with its conjugate variable c i ,  and s is the mean-square random 
overlap for the non-condensed patterns (cf equation (4)) with its conjugate variable S. The 
notation (( )) stands for the average over the distribution of the condensed patterns and Dz 
is the Gaussian measure, Dz = dz exp (- fz*)/&. 

These variables are to be self-consistently determined by the solution of the fixed-point 
equations which minimize the free energy (5) .  These fixed-point equations read 
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where 

At this point we note that the magnitude (sif i ) f i  of the Gaussian noise which is 
essentially caused by the non-condensed patterns is not the same as the mean-square random 
overlap. The reason is that the Hamiltonian is not quadratic with respect to the overlaps 
of the non-condensed patterns. The magnitude of the Gaussian noise depends explicitly 
not only on q but also on mp in such a way that the larger the overlap, the smaller the 
noise becomes. Furthermore, this magnitude decreases for increasing a, in contrast with 
the Hopfield model. There the contributions to the noise from the non-condensed patterns 
are additive so that increasing a means increasing the noise. However, in the model we 
are considering these contributions are multiplicative in such a way that the strength of the 
noises is exponentially small for large a. 

The local stability of the replica-symmetric solution against breaking may be determined 
by examining the sign of the eigenvalues of the matrix of the transverse fluctuations in the 
replicon space [20]. It turns out that the solution is stable if the following expression, related 
to the de  Almeida-Thouless (AT) replicon eigenvalue, is positive: 

In the following section we study the fixed-point equations (6)-(8) for arbritary 
temperature. 

4. Retrieval properties and phase diagrams 

At zero temperature the fixed-point equations for a Mattis-type solution m, = m&~,  (for 
some U) reduce to two equations 

2 1 
r = (1 - a )s = - 

(1 - C)Z 
where 

It is interesting to note that there appears a solution m = 1 in addition to a trivial 
solution m = 0 for all a. The m = I solution is the global minimum of the Hamiltonian 
for all a since its energy is zero, i.e. the lower bound of the Hamiltonian. An indication 
for the stability of this solution against RSB is given by the entropy 

so=-- log(l -C)+-  " [  2 I-c 1 .  
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Figure 1. The a 4  diagnm for then = 2.3 symmehic 
states of the full model. The meaning of the broken 
curves i s  explained in the text. 

Figutx 2. The m-a diagram for the n = 2 symmehic 
state o f  the full model with n = 0.15 ( I ) .  (I = 0.2 
(2 )  and a = 0.3 (3). The full curves represent stable 
SOlUtiOnS; the brohn curves are the unstable branches. 

As long as (Y > 0 and C > 0, So is negative and replica symmetry is broken. The solution 
m = 1, however, yields SO = 0. Furthermore, it leads to h = 1 (cf equation (9)) and 
hence it is stable. (Of course one cannot exclude the possibility of a first-order transition 
in the replicon space.) An explanation of this fact may be given by observing that if 
one of the overlaps becomes unity, the effect from the non-condensed patterns disappears 
because of the very structure of the Hamiltonian. We conclude that the storage capacity is 
infinite, independent of the value of the bias, which is also consistent with the simulation 
for unbiased pattems [15]. 

In the truncated model the storage capacity remains finite and the replica-symmefxic 
solutions are unstable against RSB. This is also the case in the Hopfield model. It 
suggests that the contributions from the bigher-order interactions are very important for 
the associativity as well as for the stability of the replica-symmetric solutions. 

Next we consider the symmetric mixture states of the form m, = m. xt=, S,, having 
the same overlap with n patterns. Figure 1 shows the storage capacity for the symmetric 
mixture states for n = 2,3 .  The overall properties of these mixture stat= are somewhat 
different from those of the Hopfield model. The symmetric mixture state involving two 
patterns has a finite storage capacity as a goes to zero, in contrast with the corresponding 
mixture state for the Hopfield model. In the region marked by the broken curves there 
appear other n = 2.3 mixture states with different overlap. This can be clearly understood 
from figure 2 where, as an illustration, the overlap is shown for the n = 2 symmetric state. 
Indeed we see the appearance of two turning points for certain bias regions. In fact, the 
broken curves in figure 1 represent the turning point at smaller capacities. Finally we re- 
mark that although the mixture states for unbiased patterns are unstable at (Y = 0 [l], there 
appear stable mixture states for finite a. A similar general behaviour has been found in 
Potts-glass neural networks 1211. 

Let us now turn to the properties of the model at finite temperatures. The paramagnetic 
solution characterized by m = q = 0 exists for any 01 and a with a well defined free 
energy. This is also true for the truncated model. In contrast, the paramagnetic solution in 
the Hopfield model has an ill-defined free energy if T is less than 1 - a'. However, the 
paramagnetic solution violates the AT stability condition (9) if the temperature is less than 
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Figure 3. The T-e phase diagnm for the full 
model with (1 = 0. The full curve denotes the 
retrieval transition curve, the broken c w e  indicates the 
thermodynamic transition and the chain curve the spin- 
glass transition. 

0 

Figure 4. The T-a retrieval vansition curve Tor [he 
full model with n = 0. a = 0.4. and II = 0.7. 

Below T, the spin-glass solution appears continuously. Interestingly, near a = 0, the 
transition temperature T, behaves differently depending on whether the patterns are biased 
or not. It decreases as ,/Z for biased patterns (a z 0), while it decreases linearly for 
unbiased patterns (a = 0). For large a it approaches zero exponentially in both cases. In 
the truncated model (where only the unbiased patterns are considered and the temperature 
is scaled by a half) the spin-glass transition temperature is found to be 

(15) T,' = (1 + &)( 1 - ,/Z - 01) 

which goes to zero at a = (3 - d ) / Z .  We remark that, except for the trivial scaling 
factor 2, the expression for Ti corresponds to the first two terms of the expansion of T, (cf 
(14)) for small a. 

The Mattis retrieval stale at finite temperature is found numerically by solving the fixed- 
point equations (6)-(8) for several values of a. For a = 0 the result is shown as the full 
curve in figure 3. In this figure we also display the thermodynamic transition line (broken 
curve) below which the retrieval state becomes the global minimum of the free energy. 
Finally the spin-glass transition temperature is also presented (chain curve). We remark that 
the retrieval and spin-glass transition curves cross at 01 = 3.66. The biased case a > 0 
is illustrated in figure 4 by drawing retrieval transition curves for several values of a. As 
expected, the thermodynamic and spin-glass transitions curves show a similar behaviour (cf 
figure 3). 

It is certainly interesting to compare the retrieval performance of the full model with 
that of the truncated model. This is done by studying, at a = 0, both the retrieval transition 
temperature as a function of a and the overlap as a function of a and T. The results are 
collected in figures 5-7. 

The T-a: retrieval region is shown in figure 5 .  For 01 -= 2.49 the truncated model 
allows retrieval up to slightly higher temperatures; for larger values of 01 the full model does 
better. However, this result needs to be qualified when looking at the overlap-temperature 
diagram in figure 6 for different values of the capacity. For low capacity there is no 
difference between both models on the scale of the figure. For a = 1 the overlap is always 
bigger for the full model (full curve). This stays that way for an overlap in the crossing 
region. This effect becomes even more dramatic by looking at the value of the overlap, 
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Figure 5. The T-u retieval transition curve for the 
full model (full curve) and the m c a t e d  model (broken 
curve) with a = 0. 

Figurr 6. The m-T diagram at U = 0.001.~ = I and 
a = 2.8 for the retiieval state of the full model (1x3)  
and Lhe truncated model (l'H3') with a = 0. The full 
curves represent stable solutions. the broken c w e s  are 
the unstable branches. 

Figure 7. The diagram at the retievnl 
transition temperaNE for the full model (full curve) 
and the truncated model (broken curve) with a = 0. 

I 
I 

l0.o 
0.0 

0.0 2.5 5.0 7.5 
a 

m,, at the transition temperature of the retrieval region as a function of a, as displayed in 
figure 7. 

5. Concluding remarks 

We have considered the thermodynamic properties of the multi-neuron interaction model 
with an extensive number of stored patterns. The replica-symmetric mean-field theory of the 
model, extended to include biased patterns, and without any truncation of the interaction has 
been presented. This is essentially realized by observing that the product of the terms in the 
Hamiltonian related to the non-condensed patterns can be described in the thermodynamic 
limit by the mean-square random overlap. 

The capacity-bias and the temperaturecapacity phase diagrams, and the behaviour of 
the overlap as a function of both the temperature and the capacity have been discussed 
in comparison with the analogue quantities for the truncated model and the Hopfield 
model. 

It is found that for all bias values the replica-symmetric retrieval states are stable against 
RSB and the storage capacity is infinite at zero temperature. The free energy of the retrieval 
state at zero temperature is zero, which is the lower bound for the Hamiltonian. For 
zero bias the full model leads to a bigger overlap than the truncated model, especially 
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for higher values of the capacity. The latter allows for retrieval up to slightly higher 
values of the temperature for a capacity 01 < 2.49, essentially by giving up some retrieval 
quality. 

The spin-glass transition temperature decreases for small 01, linearly for unbiased patterns 
and as a square root for biased patterns, and it  becomes lower than the retrieval transition 
temperature for large 01. a behaviour that is also seen in the truncated model. 

These results clearly suggest that the contribution from the higher-order interactions is 
important for the reaieval performance of the network 
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